The evolution of the Earth-Moon system constrained from refractory and volatile trace elements

Carsten Münker1, Chris Ballhaus2, Raul Fonseca2, Toni Schulz3
1Institut für Geologie und Mineralogie, Universität zu Köln, Germany
2Steinmann Institut, Universität Bonn, Germany
3Department für Lithosphärenforschung, Universität Wien, Austria

The Earth and the Moon exhibit a unique inventory of refractory and volatile elements that permits valuable insight into early accretion, the giant impact event and late volatile addition. There is a remarkable similarity between the Earth and the Moon in the isotope composition of many refractory elements such as Ti 1 and Cr 2. After a decade of research, it has also been established that both bodies exhibit the same W isotope composition 3. Following the revision of the terrestrial Hf/W ratio 4, it is now known that the silicate Earth and the silicate Moon also overlap in their Hf/W[4,5], thereby explaining their identical W isotope composition by an efficient re-equilibration of Hf-W during the giant impact event. Remarkable features of the silicate Earth and the Moon are their low Nb/Ta ratios (ca. 14 and 17, respectively 6), limiting the amount of impactor material in the Moon to ca. 50\%, in agreement with the most recent physical modelling results. Alternative to earlier views, explaining the low Nb/Ta of the silicate Earth by initial accretion and core formation at more reducing conditions e.g., 7, the low Nb/Ta may rather be a signature of incomplete metal-silicate equilibration during accretion 8. A combination of recent experimental data for a number of volatile elements such as Pb [9,10] now provides clear evidence that the Earth’s inventory of highly volatile elements such as Pb is to > 90\% supplied during or after the final stages of core formation by a late veneer. This mass balance is markedly different for more moderately volatile elements like Rb, where only ca. 10\% could have been added to account for the unique Rb/Pb ratio of the silicate Earth [10]. The Moon may be an analogue to a volatile depleted early Earth.

1 Zhang et al. 2012 Nature Geoscience 5 2 Lugmair & Shukolyukov 1998 GCA 62 3 Touboul et al. 2007 Nature 450 4 König et al. 2011 GCA 75 5 Münker 2010 GCA 74 6 Münker et al. 2003 Science 301 7 Corgne et al.2008 GCA 72 8 Münker et al. 2013 Min. Magazine 77(5) 9 Wood & Halliday 2010 Nature 465 10 Ballhaus et al. 2013 EPSL 362.