

Melt production models for planetary impacts

> J. de Vries Universität Bayreuth

- Why model melt production?
 - Equillibration conditions (P,T)
- How is it done?
 - From scaling laws to the depth of melting
- Impact angle
 - Critical angle and other problems
- Initial target temperature
 - Depth dependent (liquidus) temperature
- Conclusions & outlook

- Giant impact
 - Lots of energy
 - Melting/evaporation
- Composition
 - Changes due to equillibration, differentiation and element partitioning

- Equillibration / differentiation / element partitioning
 - Depend strongly on pressure and temperature conditions

How?

• 3D?

- Time consuming
- Only small, near vertical impacts due to limited domain size. Otherwise, low resolution
- 2D?
 - Only for vertical impact due to lack of symmetry in non-vertical impacts
- Parametrised models
 - Approximation, but only feasible option for several hundreds of impacts during solar system formation

Theory (Abramov et al., 2012)

 $=\frac{3.22gr_p}{v_i^2}$

- Scaling laws
 - Pi-scaling

$$\pi_{v} = \frac{\rho_{t} V_{tc}}{\rho_{p} V_{p}} \qquad \pi_{2} = \frac{3.22gr_{p}}{v_{i}^{2}}$$

$$\pi_{r} = R_{tc} \left(\frac{\rho_{t}}{\rho_{p} V_{p}}\right)^{1/3} \qquad \pi_{v} = C_{v} \pi_{2}^{-\gamma}$$
on from
$$\pi_{v} = C_{v} \pi_{2}^{-\gamma}$$

$$\pi_{r} = C_{r} \pi_{2}^{-\beta}$$

- Empirical relation from impact/explosion experiments
- Crater volume dependent on impact angle $-V_{tc} \sim v_i^{1.3} \sin^{1.3} \theta_i$ (only vertical velocity component)
- Crater radius independent of impact angle (except for very high impact energies)
 - Crater elliptical only for very small impact angles

Theory

- Crater radius and volume as function of projectile size (mass, radius)
 - To determine fraction of melt remaining
- Pressure / energy available during impact determines amount of melting
- Certain pressure needed to cause melting upon pressure release after initial shock → Hugoniot equations
 - Conservation of mass, momentum and energy across the shock

Theory

- Isobaric core → constant pressure
 - Pressure decrease quadratically with distance from isobaric core
- Energy available to melt target rock
 - Depends on projectile mass and velocity

Bjorkman & Holsapple, 1987:

$$M_{melt} = k m_p \left(\frac{v_i^2}{E_m}\right)^{3\mu/2}$$

- µ determines whether melt mass scales with energy (µ=2/3), momentum (µ=1/3)
 - Most likely value in between

Theory

Energy scaling (O'Keefe & Ahrens, 1977)

 $-V_{melt} \sim v^2$ (proportional to kinetic energy)

- µ=0.56 (Abramov et al., 2012)
 - From experiments and later models - $V_{melt} \sim v^{1.7}$
- Melt volume/crater volume same dependence on impact angle (3D study)
 - Melt volume ~ $v_i^{1.7} sin^{1.3} \theta_i$
 - Projectile diameter, densities, melt energy

FIG. 7. Melting regions and isobaric core for (a) U = 20 km/sec and (b) U = 50 km/sec. Continuous lines: best fit of the data with a circle; dotted lines: best fit of incipient and complete melting data with a limacon of Pascal. O, incipient melting; +, complete melting; ×, isobaric core data.

Depth of melting

Critical angle

Hit-and-run collisions

Hit-and-run collisions (M_{imp} ~ M_t)

Agnor & Asphaug, 2004

11

Hit-and-run collision

Asphaug, 2009

Comparison 3D (Pierazzo & Melosh, 2000)

• Granite, $P_m = 50$ GPa, $v_i = 20$ km/s, $r_p = 5$ km

Melting depth

Melting depth as function of core depth

Temperature

- Temperature of target influences amount of melting due to impact
 - Temperature increase with depth
 - Liquidus temperature increase with depth $E_m \Big(1 \frac{C_p (T_s + \frac{dT}{dz} d_m)}{C_p \frac{dT_L}{dz} d_m + L_m} \Big)$

- Calculation of melting depth too complicated for analytical solution
 - Solved numerically \rightarrow gives opportunity to add a core to the target (not implemented yet)

Conclusions

- Our calculations fit well with 3D data
- From first estimates, most impacts melt up to 0.3-0.9 times the CMB depth
- The initial temperature of the planetesimal may significantly change these results
- Core melting requires a large amount of energy → will likely only happen in some of the large impacts

Future work

- Study influence of different parameters (μ, k, dT_m/dz, dT/dz, L_m, c_p, ...)
- Include core melting via change in liquidus temperature and other material parameters → more consistent with differentiated planetesimals
- Hit-and-run collisions → potential melting but no accretion
- Experiments: Melting parameters where not available yet